风门开关在送风管路中,看起来构造很简单,只有一片或几片挡板来党风而已,用起来也很方便,只有移动手把调整挡片的角度,就可以达到调整风量的目的。但是如果提到它与能源的关系,那就大有学问了。
首先,我们用一般单纯的观念来说明不全开的风门开关为什麽会浪费能源。任何妨疑空气流动的物体放在风管中都会造成阻力,而要使空气通过这物体保持流动,必然需要多花费力气,这些多花费的马力数甚至可以计算出来,不全开的风门开关之压力损失为PL=λ•γ•v²/2g(λ为损失系数视风门开度而定,γ为氧气比重量,V为风速,g为重力加速度)。如果通过的风量为Q时,则此阻力损失的马力数未HPL=Q•PL/4500(Q的单位为m³/min,PL的单位为mmAq).
你提到风门关小时马达所吃的电流也减少了,所以认为是节省了能源。马达所吃的电流减少,所花费的电能确实降低了,但这并不能判定说是节省能源,假如我们能够在使用比你目前还小的电流而达到同样的送风目的时,那麽对你目前的状况而言就可说是节省能源了。换句话说,你的电流降低得还不够。你减少了不少的风量,这时电流应该降低更多才对,可是你所採用的方法既无法把电流降到它所应该节省的比率。
从你的叙述中,相信你所使用的送风机应该是属于离心式的,也许是透浦送风机,也可能是多翼送风机为例来说明,性能曲线中的(静压-风量曲线)与(马力-风量曲线)应如图1所示,为了远面比较清楚起见接下来我们会把静压与马力分开成上下图来表示。离心式的特微就在于马力HP会随著风量Q的减少而降低。现在我们假设你所使用的是紧接著送风机出口所装设的出口风门开关,当风门全开时,全部管路的阻力曲线如图2中的L曲线所示(风门全开时其阻力极少),这时L曲线PS~Q曲线的交点A就是运转点(或称使用点),所以风门全开时其阻力极少),这时L曲线与Ps~Q曲线的交点A就是运转点(或称使用点),所以风门全开时应该可以送出风量QA,这时所需要的马力是U点,当您想把风量减少为Qa时,就把风门关少便运转点移至B点,这时原来的管路与关少了的风门之合成阻力曲线就成为M曲线。
这时马力确实如你所说地减低为V点,如果再把风门开得更少的话,转换点即为C点,阻力曲线为N,马力为W点。换句话说,在你关少风门把风量由Qa减少到Qc时,阻力曲线就由L渐次提高为N曲线,而马力由U点渐渐降到W点,这一切就如同你所说的一样。
但是我们在这里所应注意的是,既然上面说过能源我们节省得还不够,那么是浪费在哪里呢?浪費當然是由于不全間的風門鎖造成的,我們尋找這答案就要找出風門損失是在圖上的那個地方。我們先從A點說起,您需要量QA時,全間的風門興管路所造成的損失是AQA長度的靜壓,這時因為送風機運轉在A點,它所造成的靜壓也是AQA長度,送風機所造出的靜壓興管路所需要的阻力耗費靜壓相等,所以可說毫無浪費。可是當您只需要風量QH時,管路阻力損失本來只要EQB的長度(此阻力損失隨風量的平方比而降低),但是由於您開小了風門,使送風機運轉在B點,這是送風機反而造出了更高的靜壓BQB長度,這兩個靜壓的差額BE就*是浪費的部分了,這份靜壓也就是表示出口風門的阻力損失。如果風量更小到QC時,這風門損失就更 大到CF長度了。從圖上我們很清楚地看得出來。這風門阻力的損失相當大,大到甚至超過管路本身的阻力損失值。一個不到半公分長的風門開關在關小時,它的阻力居然會比長達幾十或甚至几百公尺的管路还大。这现象或许不易令人相信,但它却是千真万确的事实,也许正由于风门开关的长度短,构造简单,并且风又看不见,阻力也摸不到,所以造成了大家的疏忽,使得中国台湾大小厂里到处都可看到浪费的现象。假如您们工厂地长期班开风门在使用的话,只要稍微改善一下,所花的改善费用相信在一年之内必定可从所节省的电费里头回收回来。
其次,我们再来谈谈到底有什么方法来改善呢?上面已经提到半开的风门所造成的阻力损失是浪费能源的元凶,我们要想办法改善的话,当然就要以如何铲除这元凶的前提下来 手,换句话说,不管我们所需要的风量有多少,风门开关是不可以关小来使用的。既然风门不可开小,而风量又要求要减小,这时我们从图3就可看出这风机的运转点非沿A→E→F顺序移动不可,但是送风机的PS~Q曲线在原来的转速N1之下只有N1一条曲线而已,这时为了满足上述的要求,,就只好降低转速(或削减叶轮 )了。也就是,当风量需要减小为QB时,可降速使PS~Q曲线变为N2曲线,这时运转点即未管路阻力曲线L与N2曲线的交点E,所送出的风量正是QB。如此一来,我们在图上看不出有任何风门开关的阻力损失。而更重要的是,送风机的运转速既经降低,所需要的马力则随运转速比成三次方下降,N2下的HP~Q曲线就变成H1曲线下方的H2曲线了,这时所需要的马力仅仅只有XQa长度而已。如果与图2互相比较的话,我们就可以发现到,同样是把风量控制减小到QB,采用降速的方法时,可以比采用关小出口风门时减少VX长度的马力了!这也就证实了一开头所提到的话——采用关小风门来控制风量并无法把电流降到它所应该节省的比率。
总而言之,当您采用关小风门来把风量自QA→QB→QC减小时,所需要的马力(与电流大致成正比)是沿U→V→W降低,但如果您采用自N1→N2→N3降速的方法时,它的马力 就会沿U→X→Y降低,这两者之间的差额是够大的了。每天24小时多花了这么多的电费,相信您一定是一百个不甘心的。
接下去,就要谈到如何来改变转速了,这个问题必须要分两方面来谈才行。首先,如果风量的改变只是长期(譬如冬天或夏天)才需要变动一次而已的话,那么醉简单的方法便是换用大小不同的皮带轮或是采用可变捷径的皮带轮,如果是马达 结驱动方式的话,就要稍花一点经费准备一个大小不同的叶轮或者采用下达(短裙改变风量)的方法了。其次,谈到短期变动风量,也许两三天一次,也许一天号几次,这时如果每次都要换用皮带轮货叶轮的话未免太麻烦,因此只好采用变速马达了。在变速马达之中,变极马达还不算太太贵,不过所改变的转速会受到限制,至于无段变速马达当然比较贵,目前中国台湾使用还不多,不过像日本等国家近年来由于石油的猛烈上涨,已经渐渐风行了,尤其现在有不必更换原来的马达而只需加装一套控制装置就可以达到无段变速的方法,相信使用者在比较得失之后会渐渐可与采用的。
以上所谈到的是,在使用中有改变风量的必要所应该采取的方法、如果说,使用中根本没有必要变更风量,可是当初购置送风机时,由于所开列的性能过后高,以至于一开始使用时就发觉风量过大而不得不关小风门使用的话,那么上述的改善方法就更发挥它的功效了。